
[Kumar, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

 http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [741]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

A SEMANTIC BASED SCHEDULING ALGORITHM FOR DATA INTENSIVE

APPLICATIONS ON GLOBAL GRIDS
Mr. P.Kumar*, Dr. M.Moorthi

* Department of Computer Applications, Kongu Arts and Science College, Erode-638107.

Department of Computer Applications, Kongu Arts and Science College, Erode-638107.

ABSTRACT
Due to the increasing size of data intensive applications , the datasets are need to be stored in a distributed manner and

multiple copies of data sets has to be replicated to provide easier access to the grid applications. In these kinds of

systems, scheduling is a key challenge because of the location of data and heterogeneity of a node by holding multiple

types of data sets in the same location. We propose a promising technique to schedule the grid applications, using

semantic based classification. Our algorithm classifies the grid resources according to the semantic meanings of data

sets it holds, using which it identifies the data location which are necessary for the grid applications to be executed

successfully.

KEYWORDS: Network Algorithm, Distributed computing, Application and Grids,

INTRODUCTION
The computational grid is a promising platform that

provides large resources for distributed algorithmic

processing. Such platforms are much more cost-

effective than traditional high performance computing

systems. However, computational grid has different

constraints and requirements to those of traditional

high performance computing systems. To fully exploit

such grid systems, resource management and

scheduling are key grid services, where issues of task

allocation and load balancing represent a common

problem for most grid systems. The load balancing

mechanism aims to equally spread the load on each

computing node, maximizing their utilization and

minimizing the total task execution time. In order to

achieve these goals, the load balancing mechanism

should be ‘fair’ in distributing the load across the

computing nodes. This implies that the difference

between the heaviest-loaded node and the lightest-

loaded node should be minimized. In this paper, we

will use a standard performance metric—the

application make span, to evaluate our approaches and

other approaches that have been proposed in the

literature. The application make span is defined in this

study as the amount of time taken from when the first

input file is sent for computation (to a computing

node), to when the last task is completed by a

computing node.

BACKGROUND STUDY
There has been many methodologies been proposed

earlier to schedule the data oriented applications. In

this chapter we review few of the techniques:

Centralized Load Balancing Approach:

In the centralized approach, one node in the system

acts as a scheduler and makes all the load balancing

decisions. Information is sent from the other nodes to

this node. This generates traffic in the grid networks

and also increases the scheduling and execution time.

Overall this approach increases the cost of a process.

Decentralized Approach:

In the decentralized approach, all nodes in the system

are involved in the load balancing decisions. It is

therefore very costly for each node to obtain and

maintain the dynamic state information of the whole

system. Most decentralized approaches let each node

obtains and maintains only partial information locally

to make sub-optimal decisions. Static load balancing

algorithms assume all information governing load

balancing decisions that can include the characteristics

of the jobs, the computing nodes and the

communication network are known in advance. Load

balancing decisions are made deterministically or

probabilistically at compile time and remain constant

during runtime. The static algorithms have one major

disadvantage—it assumes that the characteristics of

the computing resources and communication network

are all Known in advance and remain constant. Such

an assumption may not apply to a grid environment,

Refer [1].

http://www.ijesrt.com/

[Kumar, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

 http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [742]

DYNAMIC LOAD BALANCING
Dynamic load balancing algorithms attempt to use the

runtime state information to make more informative

load balancing decisions. Undoubtedly, the static

approach is easier to implement and has minimal

runtime overhead. However, dynamic approaches may

result in better performance. One simple load

balancing algorithm is the Best-fit algorithm. In this

algorithm, tasks are assigned according to their order

in the queue. Each task is then scheduled to available

computing nodes based on the completion time offered

by the nodes; the node that completes the task the

fastest (taking into account its current load) is chosen.

Histogram Based Scheduling

This algorithm is proposed for global load balancing

in structured P2P systems. Each node in these systems

has two key components: 1) a histogram manager

maintains a histogram that reflects a global view of the

distribution of the load in the system, and 2) a load-

balancing manager that redistributes the load

whenever the node becomes overloaded or under

loaded. They exploit the routing metadata to partition

the P2P network into non overlapping regions

corresponding to the histogram buckets.

SCP Based Scheduling

In this the application is scheduled according to the

availability of data set to execute the process. It

maintains the Meta data of grid systems and using

which it checks for the availability and requirement of

data sets to execute the process successfully. After that

a grid which contains maximum data will be chosen to

execute the process.

PROPOSED METHOD
We propose a novel methodology to schedule the data

oriented grid applications in an efficient way to reduce

the overall execution time of the applications.

Fig1: Represents overall architecture of the proposed

system.

Our proposed methodology consists of the

following steps:

PRE-PROCESSING
In this step we read the semantic concepts and the

Meta data about the data sets available in the data

grids. we remove the noisy semantics and meta data

and clean the meta data to ensure the quality of

semantic indexing.

Grid Classification

At this step with the output of pre-processing, we

compute the similarity measure between the semantic

concepts and the Meta data of the data sets. Based on

the similarity values we group the grids into set, which

will be further used to look up the grids according to

the requirement of the processes. We compute

Euclidean distance to compute the similarity measure.

The classified results are indexed into the data base.

We use semantic indexing to store the classification

results. In semantic indexing, the Meta data are stored

under a semantic concept based on the similarity value

of Meta data with the semantic concept.

Algorithm for Grid Classification

Step1: Read semantic concepts

Step2: Read Meta data of data sets.

Step3: clean concepts and Meta data.

Step4: compute similarity measure between

semantic concepts and Meta data.

Step5: Identify similar concepts and Meta data.

Step6: Group similar Meta data, under related

concepts.

Scheduling

D

 Grid

 network

Semantic

Concept

s

D C

B A

class

ificat

Semant

ic

Indexin

Process

Schedule

r

Location

http://www.ijesrt.com/

[Kumar, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

 http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [743]

This step performs the scheduling of the process to

help the process to be executed with in short time. The

scheduler accepts the input job and retrieves the

location of the data from the indexed data. Because of

we use semantic indexing; it’s very easier for the

scheduler to retrieve the location of the data objects.

This reduces the scheduling time of the processes and

also execution time will be less.

Algorithm for Scheduling
Step1: Read Input Job

Step2: Identify set of data objects necessary to execute

the job.

Step3: compute similarity measure of data objects

with semantic concepts.

Step4: Identify the semantic concept with respect to

similarity measure.

Step5: retrieve the location of datasets from the

indexed results.

Step6: return the results.

At the end of the scheduling process the application

will be returned with the location of the grid where the

application has to be executed. The query processor

will post the process to the returned location and will

wait for the result and return the result to the

application.

RESULTS AND DISCUSSION
The final results shows that our proposed scheduling

algorithm reduces the overall execution time of the

application by reducing the scheduling time and

execution time. Our indexing scheme reduces the

scheduling time. . The graphs in Figures shows the

number of jobs completed versus time for the two

scheduling strategies presented. Since the computation

time was dominant, within cost minimization, the jobs

were executed on the least economically expensive

compute resource.

Fig: shows the analysis of different no. of process and

time taken with different algorithm.

Blue line: Histogram based load balancing algorithm

Pink: Scp based scheduling

Yellow: Our algorithm.

The above figure shows the overall execution time is

increased compare with the waiting time and

response time

CONCLUSION
The proposed method achieves good results and

reduces the overall execution time. We further analyse

the query execution process to reduce the overall

execution time. In this paper, we proposed a

framework, semantic based global load balancing to

enable global load balance for structured P2P systems.

Each node maintains the load information of nodes in

the systems using histograms. This enables the system

to have a global view of the load distribution and hence

facilitates global load balancing. We partition the

system into non overlapping groups of nodes and

maintain the average load of them in the histogram at

a node. Even though the proposal is a general

framework, it is possible to deploy different kinds of

P2P systems on it. We demonstrated this by building

178

348

123

220

27
45

0

50

100

150

200

250

300

350

400

1 2

Execution Time in sec.

T
o

ta
l
N

o
.
o

f
J
o

b
s

http://www.ijesrt.com/

[Kumar, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

 http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [744]

three well-known structured P2P systems: Skip Graph,

BATON, and Chord on our proposal. Our performance

evaluation shows that the proposed system is superior

over other methods.

REFERENCES
1. S3: Scalable, Shareable and Secure P2P

Based Data Management System, 2008.

2. V.R. Alvarez, E. Crespo, J.M. Tamarit,

Assigning students to course sections using

tabu search, Ann. Oper. Res. 96 (2000) 1–16.

3. I. Forster, C. Kesselman, The Grid: Blueprint

for a New Computing Infrastructure, Morgan

Kaufmann, 1998.

4. F. Glover, Future paths for integer

programming and links to artificial

intelligence, Comput. Oper. Res. 13 (1986)

533–549.

5. F. Glover, Tabu search. I, ORSA J.

Computer. 1 (1989) 190–206.

6. F. Glover, Tabu search. II, ORSA J.

Computer. 2 (1990) 4–32.

7. F. Glover, J.P. Kelly, M. Laguna, Genetic

algorithms and tabu search: Hybrids for

optimization, Computer. Oper. Res. 22

(1995) 111–134.

8. F. Glover, M. Laguna, Tabu search, in: D.

Du, P.M. Pardalos (Eds.), in: Handbook of

Combinatorial Optimization, vol. 3, Kluwer

Academic

9. Publishers, Dordrecht, 1999, pp. 621–757.

10. G. Barbarosoglu, D. Ozgur, A tabu search

algorithm for the vehicle routing problem,

Comput. Oper. Res. 26 (1999) 255–270.

11. R.R. Brooks, S.S. Iyengar, J. Chen,

Automatic correlation and calibration of

noisy sensor readings using elite genetic

algorithms, Artificial Intelligence 84 (1996)

339–354.

http://www.ijesrt.com/

